LFN and RTN in Nanoscale Devices: Modeling and Impact on Circuit Operation

Christoforos Theodorou
IMEP-LAHC
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS,
Grenoble INP
Grenoble, France
christoforos.theodorou@grenoble-inp.fr

Gérard Ghibaudo
IMEP-LAHC
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS,
Grenoble INP
Grenoble, France
gerard.ghibaudo@grenoble-inp.fr

Abstract—In this work, we present the latest modeling approaches regarding LFN and RTN in advanced MOSFETs, with a special focus on the FDSOI technology. Furthermore, various methods of model implementation are shown, allowing for accurate defect-aware circuit noise and reliability studies.

Keywords—Low frequency noise, Random Telegraph Noise, Modeling, Verilog-A, FDSOI, MOSFET

I. INTRODUCTION

As the intensity of Low frequency noise (LFN) and Random Telegraph Noise (RTN) fluctuations increases with the reciprocal device area, they can therefore jeopardize the functionality of both analog and digital circuits. In Ultra-Thin Body and Box (UTBB) Fully Depleted Silicon-On-Insulator (FDSOI) MOSFETs in particular, LFN and RTN can be further influenced by coupling effects. In this work, we present some important aspects concerning the LFN/RTN modeling in advanced devices, as well as the development of circuit noise simulation methods.

II. NOISE MODEL APPROACHES

A. Dependence of Hooge parameter on inversion charge

As the Hooge mobility fluctuations depend only on the phonon scattering rate [1], the Hooge parameter, α_H, should be modulated by its contribution among other scattering mechanisms limiting the carrier mobility:

$$\alpha_H = \alpha_{Ho} \left[\frac{1}{\mu_{ph}} \left(\frac{1}{\mu_{ph}} + \frac{1}{\mu_{CS}} + \frac{1}{\mu_{SR}} \right) \right]^2$$ (1)

where α_{Ho} refers to the intrinsic Hooge parameter and μ_{ph}, μ_{CS} and μ_{SR} are respectively the phonon, Coulomb and surface roughness scattering limited mobility in the inversion layer [2]. The dependence of α_H is evaluated theoretically versus the inversion charge from weak to strong inversion, revealing that α_H is far from being independent of inversion charge, and is maximized when the PH contribution prevails with respect to CS and SR rates.

B. Impact of QMEs on Random Telegraph Noise

When the trap is not located right at the oxide-channel interface, but at a depth x_i in the oxide, the apparent trap energy E_t depends on the band bending in the gate dielectric [3], [4]. Moreover, the capture (τ_c) and emission (τ_e) times should be updated when quantum mechanical effects (QMEs) become important. So, finally, τ_c and τ_e can be expressed in a way that accounts for both x_i and QMEs:

$$\tau_c = \frac{q}{\sigma \cdot freq \cdot Q_i (a)}$$
$$\tau_e = \frac{q \cdot e^{-kF \cdot x_i}}{\sigma \cdot freq \cdot Q_i (b)}$$ (2)

where $freq$ is the escape frequency ($\approx 2 \times 10^{13}$ Hz) of the electrons in the quantized sub-band, Q_i the inversion charge when E_t crosses E_F and Q_d the depletion charge.

REFERENCES